[PDF] CSIR NET Syllabus Chemical Sciences 2022

UGC NET Study Materials for Paper 1 (eBook with MCQ) ⇒ BUY NOW
CSIR NET Syllabus Chemical Sciences

CSIR NET Syllabus Chemical Sciences 2022  – UGC NET 2022 exam will be conducted by NTA in June 2022. Here, we have provided the latest CSIR NET syllabus for Chemical Sciences. The candidates who have the subject of Chemical Sciences are advised to download the latest syllabus for the preparation.

CSIR NET Syllabus and Pattern of Chemical Sciences

CSIR UGC NET Exam for Award of Junior Research Fellowship and Eligibility for Lectureship shall be a Single Paper Test having Multiple Choice Questions (MCQs). The question paper shall be divided in three parts.

Part – A

This part shall carry 20 questions pertaining to General Science, Quantitative Reasoning & Analysis and Research Aptitude. The candidates shall be required to answer any 15 questions. Each question shall be of two marks. The total marks allocated to this section shall be 30 out of 200.

Part – B

This part shall contain 25 Multiple Choice Questions (MCQs) generally covering the topics given in the Part ‘A’ (CORE) of syllabus. Each question shall be of 3.5 Marks. The total marks allocated to this section shall be 70 out of 200.Candidates are required to answer any 20 questions.

Part – C

This part shall contain 30 questions from Part ‘B’ (Advanced) and Part ‘A’ that are designed to test a candidate’s knowledge of scientific concepts and/or application of the scientific concepts. The questions shall be of analytical nature where a candidate is expected to apply the scientific knowledge to arrive at the solution to the given scientific problem. A candidate shall be required to answer any 20. Each question shall be of 5 Marks. The total marks allocated to this section shall be 100 out of 200.

There will be negative marking @25% for each wrong answer.

 

CSIR NET Syllabus CHEMICAL SCIENCES

Inorganic Chemistry

  • Chemical periodicity
  • Structure and bonding in homo- and heteronuclear molecules, including shapes of molecules (VSEPR Theory).
  • Concepts of acids and bases, Hard-Soft acid base concept, Non-aqueous
  • Main group elements and their compounds: Allotropy, synthesis, structure and bonding, industrial importance of the compounds.
  • Transition elements and coordination compounds: structure, bonding theories, spectral and magnetic properties, reaction mechanisms.
  • Inner transition elements: spectral and magnetic properties, redox chemistry, analytical
  • Organometallic compounds: synthesis, bonding and structure, and Organometallics in homogeneous catalysis.
  • Cages and metal
  • Analytical chemistry- separation, spectroscopic, electro- and thermoanalytical
  • Bioinorganic chemistry: photosystems, porphyrins, metalloenzymes, oxygen transport, electron- transfer reactions; nitrogen fixation, metal complexes in
  • Characterisation of inorganic compounds by IR, Raman, NMR, EPR, Mössbauer, UV-vis, NQR, MS, electron spectroscopy and microscopic
  • Nuclear chemistry: nuclear reactions, fission and fusion, radio-analytical techniques and activation analysis.

 

Physical Chemistry

  • Basic principles of quantum mechanics: Postulates; operator algebra; exactly- solvable systems: particle-in-a-box, harmonic oscillator and the hydrogen atom, including shapes of atomic orbitals; orbital and spin angular momenta;
  • Approximate methods of quantum mechanics: Variational principle; perturbation theory up to second order in energy;
  • Atomic structure and spectroscopy; term symbols; many-electron systems and antisymmetry
  • Chemical bonding in diatomics; elementary concepts of MO and VB theories; Huckel theory for conjugated π-electron systems.
  • Chemical applications of group theory; symmetry elements; point groups; character tables; selection rules.
  • Molecular spectroscopy: Rotational and vibrational spectra of diatomic molecules; electronic spectra; IR and Raman activities – selection rules; basic principles of magnetic
  • Chemical thermodynamics: Laws, state and path functions and their applications; thermodynamic description of various types of processes; Maxwell’s relations; spontaneity and equilibria; temperature and pressure dependence of thermodynamic quantities; Le Chatelier principle; elementary description of phase transitions; phase equilibria and phase rule; thermodynamics of ideal and non-ideal gases, and solutions.
  • Statistical thermodynamics: Boltzmann distribution; kinetic theory of gases; partition functions and their relation to thermodynamic quantities – calculations for model systems.
  • Electrochemistry: Nernst equation, redox systems, electrochemical cells; Debye- Huckel theory; electrolytic conductance – Kohlrausch’s law and its applications; ionic equilibria; conductometric and potentiometric
  • Chemical kinetics: Empirical rate laws and temperature dependence; complex reactions; steady state approximation; determination of reaction mechanisms; collision and transition state theories of rate constants; unimolecular reactions; enzyme kinetics; salt effects; homogeneous catalysis; photochemical
  • Colloids and surfaces: Stability and properties of colloids; isotherms and surface area; heterogeneous catalysis.
  • Solid state: Crystal structures; Bragg’s law and applications; band structure of
  • Polymer chemistry: Molar masses; kinetics of
  • Data analysis: Mean and standard deviation; absolute and relative errors; linear regression; covariance and correlation

 

Organic Chemistry

  • IUPAC nomenclature of organic molecules including regio- and
  • Principles of stereochemistry: Configurational and conformational isomerism in acyclic and cyclic compounds; stereogenicity, stereoselectivity, enantioselectivity, diastereoselectivity and asymmetric
  • Aromaticity: Benzenoid and non-benzenoid compounds – generation and
  • Organic reactive intermediates: Generation, stability and reactivity of carbocations, carbanions, free radicals, carbenes, benzynes and
  • Organic reaction mechanisms involving addition, elimination and substitution reactions with electrophilic, nucleophilic or radical species. Determination of reaction
  • Common named reactions and rearrangements – applications in organic
  • Organic transformations and reagents: Functional group interconversion including oxidations and reductions; common catalysts and reagents (organic, inorganic, organometallic and enzymatic). Chemo, regio and stereoselective
  • Concepts in organic synthesis: Retrosynthesis, disconnection, synthons, linear and convergent synthesis, umpolung of reactivity and protecting
  • Asymmetric synthesis: Chiral auxiliaries, methods of asymmetric induction – substrate, reagent and catalyst controlled reactions; determination of enantiomeric and diastereomeric excess; enantio-discrimination. Resolution – optical and
  • Pericyclic reactions – electrocyclisation, cycloaddition, sigmatropic rearrangements and other related concerted Principles and applications of photochemical reactions in organic chemistry.
  • Synthesis and reactivity of common heterocyclic compounds containing one or two heteroatoms (O, N, S).
  • Chemistry of natural products: Carbohydrates, proteins and peptides, fatty acids, nucleic acids, terpenes, steroids and alkaloids. Biogenesis of terpenoids and
  • Structure determination of organic compounds by IR, UV-Vis, 1H & 13C NMR and Mass spectroscopic

 

Interdisciplinary topics

  • Chemistry in nanoscience and
  • Catalysis and green
  • Medicinal
  • Supramolecular
  • Environmental

Leave a Comment

Your email address will not be published.

error: Content is protected !!
Scroll to Top